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Abstract

Hydrological post-processors refer here to statistical models that are applied to hydro-
logical model predictions to further reduce prediction errors and to quantify remaining
uncertainty. For streamflow predictions, post-processors are generally applied to daily
or sub-daily time scales. For many applications such as seasonal streamflow forecast-5

ing and water resources assessment, monthly volumes of streamflows are of primary
interest. While it is possible to aggregate post-processed daily or sub-daily predictions
to monthly time scales, the monthly volumes so produced may not have the least errors
achievable and may not be reliable in uncertainty distributions. Post-processing directly
at the monthly time scale is likely to be more effective. In this study, we investigate the10

use of a Bayesian joint probability modelling approach to directly post-process model
predictions of monthly streamflow volumes. We apply the BJP post-processor to 18
catchments located in eastern Australia and demonstrate its effectiveness in reducing
prediction errors and quantifying prediction uncertainty.

1 Introduction15

Streamflow predictions from a hydrological model can be used for wide range of ap-
plications including flood forecasting at short time scales to long term assessments
of water resources. Model predictions are subject to errors originating from various
sources including input data, calibration data, model structure and parameters. The
model is usually calibrated prior to its application to compensate for these errors, thus20

reducing uncertainty in the predictions. However, a model being a simplified represen-
tation of a system will always contain uncertainty in its predictions (Gupta et al., 2005).
Post-processors are statistical models that are applied to model predictions to further
reduce errors and to quantify uncertainty in the streamflow predictions (Seo et al.,
2006).25
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Post-processors can reduce errors through elimination of systematic bias and/or by
reduction of “short memory” or transient errors (Pagano et al., 2011). The former is
generally achieved by using simple statistical approaches like quantile mapping or re-
gression (Hashino et al., 2007; Shi et al., 2008), while the latter by prediction updating
(Lekkas et al., 2001; Moraweitz et al., 2011). The prediction updating techniques exploit5

persistence of residuals to correct for errors using linear or non-linear auto-regressive
models (WMO, 1992; Shamseldin and O’Connor, 1999; Xiong and O’Connor, 2002;
Pagano et al., 2011). Streamflow predictions, even after bias correction and prediction
updating contain errors that cannot be eliminated and information on prediction un-
certainty is useful for decision makers who use the predictions. Post-processors are10

generally designed to provide an estimate of the total “lumped” uncertainty in the pre-
dictions by constructing statistical models of errors based on model predictions and
historical observations (e.g. Krzysztofowicz, 1999; Engeland et al., 2005; Montanari
and Grossi, 2008).

In hydrology, post-processors have been mostly used for short-term streamflow or15

river height forecasting. The examples include Bayesian Forecasting System (BFS;
Krzysztofowicz, 1999, 2002; Reggiani and Weerts, 2008), the US National Weather
Service (NWS) post-processor (Seo et al., 2006), the General Linear Model Post-
Processor (Zhao et al., 2011), the Meta Gaussian post-processor (Montanari and
Grossi, 2008) and others. They range in complexity from the NWS post-processor that20

adopts a fairly simple auto-regressive error structure (Seo et al., 2006), to BFS that
uses complex parameterization scheme based on meta-Gaussian distributions. Some
are primarily intended for uncertainty quantification but also include components for
error reduction (e.g. Krzysztofowicz, 1999, 2002).

Methods for parameterization, parameter estimation and calculation of predictive25

distributions differ among post-processors, although some common features can be
found. Most post-processors produce probabilistic predictive distributions of stream-
flow (or river height) conditioned on model predictions and recent streamflow observa-
tions. They generally assume linear dependence among the variates in a transformed
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normal space and most use Normal Quantile Transformation (NQT; Krzysztofowicz,
1997, 1999; Todini, 2008; Li et al., 2010) to normalise the variables. All assume the
estimated values of the parameters (of the post-processors) to be “true” and ignore
the uncertainty in estimating their values (Krzysztofowicz, 1999, 2002; and others). For
a complex post-processor like BFS, this (parametric uncertainty) can be substantial5

(Seo et al., 2006). More importantly, they are all designed to post-process streamflow
predictions at daily or sub-daily time scales.

For many hydrological applications, such as seasonal streamflow forecasting, wa-
ter resources and climate change assessments, monthly streamflow volumes are of
primary interest. While daily predictions from daily models may be post-processed at10

the daily time scale and then aggregated to monthly, there is no guarantee that the
monthly volumes so produced are reliable in uncertainty distributions and have the
least errors achievable. It is likely much more effective to apply post-processing directly
at the monthly time scale, where pre-processed monthly volumes may come either
from aggregating daily model outputs or simply from monthly models.15

In this study, we investigate the use a Bayesian joint probability (BJP) modelling ap-
proach to post-process model predictions of monthly streamflow volumes. The BJP
method was originally developed for forecasting seasonal streamflows in Australia
(Wang et al., 2009). Here we apply it for bias correction, prediction updating and un-
certainty quantification of monthly streamflow volumes generated from a monthly water20

balance model. The BJP method uses a parametric transformation to normalise data
and stabilise variance. It allows for parameter uncertainty in the post-processor, and
this can be important when dealing with monthly variables, which have far fewer data
points than daily variables. In this study, we assess three formulations of the BJP post-
processor in their ability to reduce error and quantify uncertainty.25

The paper is structured as follows. Section 2 describes the catchments and data
used in the study. Section 3 presents the hydrological model used and the formulations
of the BJP post-processor. Evaluation of the post-processor is given in Sect. 4 and
followed by discussions in Sect. 5. Conclusions are drawn in Sect. 6.
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2 Study area and data

We test BJP post-processor in 18 catchments located in Queensland, Victoria (includ-
ing one at the border with New South Wales) and Tasmania (see Fig. 1). The Victorian
catchments are further divided into 3 regions; upper Murray, central Victoria and south-
ern Victoria (see Table 1).5

The catchments range in size from 127 to 36 000 km2. The Queensland catchments
are the largest in size and experience grassland to semi-arid type of climate, character-
ized by low rainfall and high evapotranspiration. The mean annual rainfall is less than
600 mm and the catchments are dry during the austral winter. In contrast, the Victo-
rian catchments experience a temperate climate, with higher rainfall (617–1400 mm)10

occurring during the austral winter and spring. The Tasmanian catchments experience
temperate oceanic climate and are the wettest with mean annual rainfall in excess of
1900 mm. The Tasmanian catchments are wet throughout the year.

We use observed monthly streamflow data obtained from various water resource
management agencies and the Bureau of Meteorology, Australia. For most catchments,15

with the exception of some in Queensland and Victoria, the data are available from
1950 to 2008 (see Table 1). The monthly catchment average rainfall and potential evap-
otranspiration for each catchment are calculated from a 5 km gridded dataset available
from the Australian Water Availability Project (AWAP; Jones et al., 2009).

3 Methods20

In each catchment, we calibrate parameters of a hydrologic water balance model and
generate predictions. The “raw” predictions generated by the model contain errors that
are unreconciled during calibration process. The BJP post-processor aims to reduce
such errors and quantify uncertainty. This section describes the process of generating
streamflow predictions and their subsequent post-processing.25
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3.1 Generation of streamflow predictions using a hydrological model

We use a monthly model known as WAPABA (Water Partition and Balance; Wang
et al., 2011) model to generate streamflow predictions. WAPABA is a modified version
of the Budyko framework model (Zhang et al., 2008) and consists of two storages and
five parameters. The model uses consumption curves to partition water into different5

components based on the availability of water (supply) and demand. WAPABA has
been tested in 331 catchments in Australia and has demonstrated ability to perform
well (Wang et al., 2011).

We calibrate WAPABA using the shuffled complex evolution search method (SCE;
Duan et al., 1994) for a period of five years. Prior to every model run we allow a five10

year warm up period to reduce model sensitivity to state initialization errors. We use
a scalarized multi-objective measure consisting of a uniformly weighted average of the
Nash-Sutcliffe efficiency coefficient (Nash and Sutcliffe, 1970), the Nash-Sutcliffe effi-
ciency of log transformed flows, the Pearson correlation coefficient and a symmetric
measure of bias (Wang et al., 2011). Finally, we use the calibrated parameters to pro-15

duce streamflow predictions using the observed rainfall.

3.2 Statistical post-processing

The BJP modelling approach assumes that a set of predictands y(2), and their predic-
tors y(1) follow a joint multivariate normal distribution in a transformed space. Normal-
ization of the variables is achieved by using the log-sinh transformation (Wang et al.,20

2012). The log-sinh transformation replaces the previously used Yeo-Johnson trans-
formation (Yeo and Johnson, 2000; Wang et al., 2009; Wang and Robertson, 2011).
Although both have data normalization and variance stabilization properties, the log-
sinh has been shown to outperform the Box-Cox based Yeo-Johnson transformation
when applied to catchments with highly skewed data (Wang et al., 2011).25

The posterior distribution of the parameters, including mean, variance and trans-
formation parameters for each variable and a correlation matrix for the multivariate
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normal distribution, is estimated using a Bayesian inference. The sampling of the pos-
terior parameter distribution is done by using a Markov chain Monte Carlo method. The
posterior predictive density for a new event is given by:

f (y(2)|y(1)) = P (y(2)|y(1);YOBS) =
∫
p(y(2)|y(1),θ) ·p(θ|YOBS) ·dθ (1)

where YOBS contains the historical data of both predictor and predictand variables used5

for model inference, and θ is the parameter vector. Details of the method for the nu-
merical evaluation of Eq. (1) can be found in Wang et al. (2009) and Wang and Robert-
son (2011).

To apply BJP as a post-processing tool we implement three methodologies with dif-
ferent combinations of the predictors.10

Method A: method A represents the simplest case where only WAPABA predic-
tions is applied as the predictor (y(1) in Eq. 1) and the observed streamflows as
the predictand (y(2) in Eq. 1). This combination is to achieve two post-processing
objectives, correction of systematic bias and quantification of uncertainty. The bias
correction is achieved through the regression property embedded within the BJP15

modelling approach (see Wang et al., 2009).

Method B: for method B, we add a second predictor over that used for method
A. We add streamflow data observed one month previously. The inclusion of
lagged streamflow observations is to add auto-regressive component to the post-
processor and allow prediction updating. This method reduces errors through20

correction of systematic bias as well as prediction updating and quantifies un-
certainty.

Method C: for method C, we introduce a third predictor, the WAPABA model
outputs simulated in the previous month. This inclusion is to further improve the
prediction updating ability of the post-processor by utilizing the persistence in the25

simulated time series.
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For each method, we first train the post-processor using the historically observed data.
To account for seasonal effects, we establish 12 different models for each month of the
year. For each month, the post-processed probabilistic predictions are generated using
a “leave-one-out” cross validation procedure. This consists of sampling the parameters
using all but the year of interest and then generating predictions for the “left out” year.5

The cross validation period in most catchments period is about 59 yr (1950–2008).
Figure 2 is an example of the post-processed predictions generated by the BJP

post-processor. This example is to provide the reader an appreciation of how the post-
processed predictions from the BJP post-processor may look like. A detail evaluation
of the post-processor, with respect to the post-processing qualities, will be presented10

in Sect. 4. The example is drawn from Lake Eildon in central Victoria and shows
[0.1,0.25,0.5,0.75,0.9] quantiles and observed streamflow values plotted chronolog-
ically. In this case the post-processed predictions do not show any obvious trend with
time and the widths of the quantile intervals seem to cover the expected number of the
observed values.15

4 Results

In this section we assess the quality of the probabilistic predictions generated by using
the three methods and evaluate how effective the BJP post-processor is in reducing
errors and quantifying uncertainty.

4.1 Reduction of error20

We assess the ability of BJP post-processor to reduce errors by using a measure of ac-
curacy called Root Mean Squared Error in Probability (RMSEP; Wang and Robertson,
2011). RMSEP (Eq. 2) measures error in a probability space. An advantage of RMSEP
over the more commonly used mean squared error or root mean squared error is that,
it places equal emphasis on errors obtained at all events rather than on a few large25
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errors occurring at large events.

RMSEP =

[
1
n

n∑
t=1

(FCLI(y
t)− FCLI(y

t
OBS

))2

] 1
2

(2)

where, y t and y t
OBS are the predictions and observations at t = 1,2, . . . ,n events, re-

spectively. The predictions can be either WAPABA simulations or the medians of post-
processed distributions. FCLI is the cumulative historical distribution, and FCLI(y) is the5

non-exceedance probability.

4.1.1 Performance of the WAPABA model

The RMSEP error values of the WAPABA predictions are shown in Fig. 3. Each row in
the figure corresponds to a catchment and each column to a month. In general, except
for river Cape and in Queensland, Thompson and O’Shannassy Reservoirs in southern10

Victoria, the RMSEP values are relatively higher in drier months or months when the
catchments just start to get wet. This occurs during August–October in Queensland,
May–March in upper Murray, January–May in central Victoria and February–March in
Tasmania.

This suggests an inability of the model to properly characterize low flows and to15

capture the change in catchment dynamics from being dry to getting wet. There can be
various reasons for this, including, for example, non-consistency in the data between
the calibration and evaluation period (with the calibration period being either wetter or
direr), the choice of objective function for calibration, inadequate model structure or
a combination of these. While it might be interesting to investigate the causes of poor20

model performance in these catchments from a model diagnostic point of view, this is
beyond the scope of this study. Here we only focus on evaluating whether the errors
can be reduced by the post-processor.
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4.1.2 Method A: bias reduction

Figure 4a shows the differences in RMSEP error values between the WAPABA predic-
tions and that produced from method A (WAPABA prediction−method A). The values
are colour coded with blue indicating the reductions in RMSEP error values and red
indicating increases.5

In general, the result shows that method A effectively reduces systematic bias
present in WAPABA predictions. This is manifested as reductions in RMSEP error val-
ues over the 18 catchments. The reductions in RMSEP roughly follow the error patterns
seen in Fig. 3. In most cases the differences in RMSEP values are either positive or
zero, indicating that the post-processor either reduces errors or preserves (does not10

degrade) performance of the WAPABA predictions. The highest reductions in RMSEP
values occur in Lake Eildon and Goulbourn Weir of central Victoria.

4.1.3 Method B: prediction updating

Figure 4b shows the benefit of prediction updating by assimilating the recent stream-
flow observations (method B). We use the difference between method A and B (method15

A−method B) to indicate any further reductions in errors achieved by prediction updat-
ing. As in previous case blue indicates reductions in errors and red indicates increases.

The figure shows further reductions in RMSEP values after bias correction (method
A). The reductions occur in most of the catchments. The reductions in errors are gov-
erned by whether the errors are present after bias correction and the persistence in20

the streamflow observation data. For example, the WAPABA predictions in River Cape
of Queensland and Lake Nillahcootie of central Victoria (Fig. 3) show the presence of
substantially large error values in initial few months even after bias correction, but can-
not be corrected due to the lack of persistence in the errors. In the upper Murray region,
central Victoria and southern Victoria, reductions occur in most of the catchments, and25

in some catchments (such as Cairn Curran Reservoir), it is greater than that achieved
through bias correction. In Tasmanian catchments, the reductions are negligible.
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4.1.4 Method C: prediction updating using WAPABA lagged simulation

Figure 4c shows additional benefits achieved by assimilating “lagged” streamflow sim-
ulation. The difference is measured relative to method B (method B−method C) such
that positive (blue) values indicate further reductions in RMSEP error values over that
achieved by B. The result shows that the benefits of adding lag-1 WAPABA streamflow5

tend to be negligible in most catchments and seasons. Although some reductions in
RMSEP error values can be observed in Maroondah reservoir (in southern Victoria),
for the months of February, March and May in other catchments it is close to zero.

4.2 Quantification of uncertainty

The post-processor should be able to quantify the uncertainty in predictions. As a mea-10

sure of the ability to quantify uncertainty, we assess if the probabilistic predictions gen-
erated by the post-processor are reliable and robust. We assess the predictions gen-
erated using all three methods in 18 catchments, but present results for Lake Eildon
using method B as a general representation.

4.2.1 Assessment of reliability15

Reliability refers to “statistical consistency” of the predictive probability distributions
with the observed frequency of the events (Toth et al., 2003; Robertson et al., 2012).
In this study we use PIT (probability integral transform) uniform probability plots (Wang
et al., 2009; Wang and Robertson, 2011) to assess the overall reliability of the post-
processed predictive distributions. We choose PIT uniform probability plots over other20

methods because they are more suited to smaller sample sizes (Wang et al., 2009).
The PIT of the observed value is given as, πt = F t(y t

OBS), where, F t(y t
OBS) is the

non-exceedance probability of the observed streamflow in the predictive distribution.
The predictive distributions are said to be reliable if the PIT values are distributed uni-
formly. To check uniformity, we plot PIT values corresponding to each event in a uniform25
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probability plot (Wang et al., 2009; Wang and Robertson, 2011). A close alignment of
the values to 1 : 1 indicates uniformity and therefore reliable distributions. Deviations
from the 1 : 1 line indicate if the predictive distributions are too low, high or if the uncer-
tainty spreads are too wide or narrow. The details on how to interpret the PIT plots can
be found in Thyer et al. (2009), Wang et al. (2009) and Wang and Robertson (2011).5

Figure 5 shows the PIT uniform probability plots of the post-processed predictions
generated for the months of February and July in Lake Eildon. The dotted inclined
lines depict the Kolmogorov 5 % significance band. The PIT values in the plots align
quite uniformly along the diagonal 1 : 1 line (solid inclined line) and are well within the
significance band. This suggests that the post-processed predictive distributions are10

over all reliable and the width of uncertainty intervals are of appropriate spread (not
too wide or narrow). The result is similar for all the months in Lake Eildon (figures not
included).

4.2.2 Assessment of robustness

Robustness refers to “conditional reliability” of the predictive distributions over time and15

event size. To measure the robustness of the predictive distributions against time, we
plot PIT values chronologically and analyse the plot for the presence of any trends
or patterns. The distributions are robust (over time) if the PIT values are distributed
uniformly. Any existing trends or patterns indicate the presence of systematic errors in
the distributions (Wang et al., 2009; Wang and Robertson, 2011).20

Figure 6 (top row) shows the PIT values plotted chronologically for February and
July. The PIT values tend to be distributed randomly against time, devoid of any trends
or patterns indicating that distributions are robust. In fact, this was the case for all the
months in Lake Eildon (figure not included).

To measure robustness of the post-processed predictions against flow magnitudes,25

we plot post-processed prediction quantiles and the observed streamflow values
against the medians of the predictions. As in previous case we analyse the plot to
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detect presence of any trends or patterns. Figure 6 (bottom row) shows the post-
processed quantiles plotted against event magnitude.

The figure shows that the quantiles increase with event sizes and the medians are
consistent with the observed flows. The observed flows are scattered randomly over
the medians, suggesting that the post-processed quantiles are robust with respect to5

event magnitudes. The plots also show that the width of the uncertainty intervals are of
appropriate spread for all the event size.

This verification approach is applied for all post-processing method (A, B and C) for
all the catchments, for each month. In general, the results are consistent to the results
obtained in Lake Eildon.10

5 Discussion

The results show that large bias can occur in predictions despite calibrating WAPABA
using a multicriteria objective function that includes a symmetric measure of bias. This
is not surprising because maximization of the scalarized function is a result of com-
promise between four objective functions and does not necessarily lead to removal of15

systematic bias in all catchments and in all months. The presence of bias is especially
high in Lake Eildon. The BJP post-processor eliminates bias in the predictions effec-
tively, resulting in bias close to zero throughout the year. This can be better appreciated
in Fig. 7 which shows monthly percentage bias obtained by WAPABA predictions and
its elimination by method A.20

Furthermore, it is interesting to note that the bias correction is not just due to linear
changes in slope or intercepts but also due to non-linear changes as illustrated by
Fig. 8a, b. The figures demonstrate non-linear compensations to WAPABA predictions
by the BJP post-processor. The log-sinh transformation in combination with the BJP
model parameter inference, allow for the non-linear corrections of errors thus allowing25

for corrections of conditional as well as unconditional biases.
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Our results show that further error reductions can be possible through prediction up-
dating. This contradicts the assumptions made by Li et al. (2011), who assume that
persistence in error structure at monthly time step is negligible. However, we note that
the results tend to be catchment specific. In our case the improvements are mostly seen
in catchments that have substantial streamflow contribution from the slow responding5

mechanisms (resulting in longer memory) in the catchment. This seems to be the case
in upper Murray, central Victoria and southern catchments, where significant reductions
in errors can be observed. The two catchments in Tasmania and the one in Queens-
land and central Victoria have shorter catchment “memory” with the streamflow being
dominated by fast responding runoff processes and therefore the benefits of prediction10

updating is negligible.
We acknowledge that the rainfall forecast uncertainty represents a major source of

uncertainty in streamflow forecast (Krzysztofowicz, 1999; Kuczera et al., 2006). In this
study, however, we run the water balance model in a simulation mode. Therefore the
total uncertainty quantified by the post-processor is the “lumped” combination of the15

hydrologic uncertainty, rainfall measurement uncertainty, the streamflow measurement
uncertainty and the uncertainty in inferring the values of the parameters of the BJP
post-processor. However, the post-processor is equally applicable in the real world
applications using rainfall forecasts. In such case the uncertainty spread quantified by
the post-processor will be wider to reflect the uncertainty in forecasting rainfall.20

6 Summary and conclusions

In this study, we present a statistical post-processor capable of reducing errors
and quantifying uncertainty in monthly streamflow predictions. The statistical post-
processor is based on the BJP modelling approach (Wang et al., 2009). The BJP
post-processor is applied to 18 catchments in Australia and its ability to reduce er-25

rors, through reductions of systematic bias and prediction updating, and to quantify
uncertainty in the monthly streamflow predictions is assessed.
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The study shows that the BJP post-processor is capable of improving the accuracy
of the streamflow predictions by reducing systematic bias in most of the catchments.
In many cases reduction of bias is achieved by means of non-linear relationship be-
tween model predictions and the observed streamflow values. The post-processor also
demonstrates its useful property in preserving the accuracy (does not increase error)5

of predictions when bias correction is not possible.
Prediction updating through the assimilation of recent streamflows by the post-

processor results in further reductions in RMSEP error values over that achieved by
bias correction alone, and is most effective for catchments showing stronger persis-
tence in the prediction errors. Benefits of prediction updating using additional informa-10

tion from the water balance model simulation seem to be very marginal and do not
justify the added complexity of introducing another predictor to the post-processor.

The BJP post-processor is capable of generating probabilistic predictions that are
overall reliable. The uncertainty quantified by the processor is of appropriate spread.
The post-processed predictive distributions are robust with respect to time and event15

magnitude.
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Table 1. Brief attributes of the 18 catchments used for the study.

Catchment Region Available Catchment Mean annual Mean annual Annual runoff
Record area (km2) rainfall (mm) flow (mm) coefficient

Burdekin River Queensland 1967–2008 36 260 567 76 (2765 GL) 0.13
Cape River Queensland 1967–2008 16 074 456 23 (372 GL) 0.05
Lake Hume upper Murray 1950–2008 12 184 819 227 (2764 GL) 0.28
Dartmouth Reservoir upper Murray 1950–2008 3193 1042 279 (890 GL) 0.27
Kiewa River upper Murray 1965–2008 1748 1099 248 (433 GL) 0.23
Ovens River upper Murray 1959–2008 7543 963 175 (1320 GL) 0.18
Lake Nillahcootie central Victoria 1950–2008 422 942 150 (63 GL) 0.16
Lake Eildon central Victoria 1950–2008 3877 1104 373 (1447 GL) 0.34
Goulburn Weir central Victoria 1950–2008 7166 769 188 (1349 GL) 0.24
Eppalock Reservoir central Victoria 1950–2008 1749 630 98 (172 GL) 0.16
Cairn Curran Reservoir central Victoria 1950–2008 1603 617 72 (115 GL) 0.12
Tullaroop Reservoir central Victoria 1950–2008 702 633 77 (54 GL) 0.12
Thompson Reservoir southern Victoria 1950–2008 487 1299 485 (236 GL) 0.37
Upper Yarra Reservoir southern Victoria 1950–2008 336 1387 443 (149 GL) 0.32
Maroondah Reservoir southern Victoria 1950–2008 129 1351 577 (74 GL) 0.43
O’Shannassy Reservoir southern Victoria 1950–2008 127 1404 766 (97 GL) 0.55
Mersey-Forth HES Tasmania 1950–2008 2698 1900 793 (2141 GL) 0.42
King HES Tasmania 1950–2008 731 2703 1724 (1260 GL) 0.64

Note: HES stands for Hydro Electric Scheme.
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Figure 1: Location of the 18 catchments used for the study. 416 
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Fig. 1. Location of the 18 catchments used for the study.
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Figure 2: The time series of the post-processed prediction quantiles against the observed; only a 423 

subset of the entire cross validation period is shown. [Light blue lines represent 0.1 – 0.9 quantiles, 424 

dark blue lines represent the 0.25 – 0.75 quantiles, red dots are the observed streamflow values and 425 

the blue dots are the medians of the post-processed predictive distributions.]  426 
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Fig. 2. The time series of the post-processed prediction quantiles against the observed; only
a subset of the entire cross validation period is shown. (Light blue lines represent 0.1–0.9 quan-
tiles, dark blue lines represent the 0.25–0.75 quantiles, red dots are the observed streamflow
values and the blue dots are the medians of the post-processed predictive distributions.)
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Figure 3: Performance of WAPABA in all 18 catchments; RMSEP error values calculated for each 438 
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Fig. 3. Performance of WAPABA in all 18 catchments; RMSEP error values calculated for each
month.
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 442 

 443 

Figure 4: (a) Difference in RMSEP values between WAPABA predictions and method A (WAPABA – method A); (b) difference in RMSEP values between 444 

method A and B (method A –method B); (c) difference in RMSEP values between method B and C (method B – method C).  445 
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Fig. 4. (a) Difference in RMSEP values between WAPABA predictions and method A (WA-
PABA−method A); (b) difference in RMSEP values between method A and B (method
A−method B); (c) difference in RMSEP values between method B and C (method B−method
C).
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 449 
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 451 

 452 

 453 

Figure 5: PIT uniform probability plots of post-processed streamflow predictions for two months 454 

(Feb. and Jul) in Lake Eildon; (1:1 solid line, theoretical uniform distribution; broken lines, 455 

Kolmogorov 5% significance band; circle, PIT value of observed streamflow).  456 
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Fig. 5. PIT uniform probability plots of post-processed streamflow predictions for two months
(February and July) in Lake Eildon; (1 : 1 solid line, theoretical uniform distribution; broken lines,
Kolmogorov 5 % significance band; circle, PIT value of observed streamflow).

11222

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/11199/2012/hessd-9-11199-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/11199/2012/hessd-9-11199-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 11199–11225, 2012

A Bayesian joint
probability

post-processor

P. Pokhrel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

21 

 

 458 

Figure 6: Top row - Probability Integral Transform (PIT) values plotted against time for months of 459 

February and July; Bottom row - Post-processed quantiles plotted against their median values for 460 

months of February and July. The red dots represent the observed streamflows, light blue vertical 461 

lines are the 0.1 – 0.9 quantiles and the dark blue lines are the 0.25-0.75 quantiles.  462 
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Fig. 6. Top row – Probability Integral Transform (PIT) values plotted against time for months of
February and July; Bottom row – post-processed quantiles plotted against their median values
for months of February and July. The red dots represent the observed streamflows, light blue
vertical lines are the 0.1–0.9 quantiles and the dark blue lines are the 0.25–0.75 quantiles.
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 464 

Figure 7: Monthly biases % in Lake EILDON, raw WAPABA predictions (blue) and method A 465 

(black). [The bias for method A = (Mean monthly streamflow observations - Mean probabilistic 466 

predictions averaged each month)/ (Average observed monthly streamflow); the bias for WAPABA = 467 

(mean monthly streamflow observations - mean monthly WAPABA predictions)/ (Average observed 468 

monthly streamflow)]. 469 
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Fig. 7. Monthly biases % in Lake Eildon, raw WAPABA predictions (blue) and method
A (black). (The bias for method A= (Mean monthly streamflow observations−Mean proba-
bilistic predictions averaged each month)/(Average observed monthly streamflow); the bias
for WAPABA= (mean monthly streamflow observations−mean monthly WAPABA predic-
tions)/(Average observed monthly streamflow)).
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 480 

Figure 8:  WAPABA predictions vs. the medians of post-processed predictions produced by method A 481 

in Lake Eildon for months of February (left) and July (right), showing the example of non-linear error 482 

corrections by the BJP post-processor.  483 
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Fig. 8. WAPABA predictions vs. the medians of post-processed predictions produced by
method A in Lake Eildon for months of February (left) and July (right), showing the example
of non-linear error corrections by the BJP post-processor.
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